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There is evidence that certain minerals, particularly chrysotile, have cylindrical structures which 
possess a degree of order definable in terms of a cylindrical lattice. A classification and enumeration 
of the possible types of such lattices is made in order to clarify the possibilities of structural variation 
in such minerals. The possible symmetry properties of such structures are also discussed. 

1. Introduction 

It  is now generally accepted on the evidence of elec- 
tron microscopy (Bates, Sand & Mink, 1950; Noll & 
Kircher, 1951, 1952) that  chrysotile, garnierite and 
halloysite have a tubular structure. Jagodzinski & 
Kunze (1954a, b, c) and Whittaker (1954, 1955a, b) 
have discussed the X-ray diffraction phenomena to be 
expected from a tubular structure in which the wall 
consists of a succession of equally spaced layers 
mutually ordered in the direction parallel to the 
cylinder axis, and these are in general agreement with 
the diffraction phenomena obtained from chrysotile. 

I t  has been known for some years that  chrysotile 
exists in two forms apparently based on orthorhombic 
and monoclinic lattices (Whittaker, 1952), and before 
the nature of the cylindrical-lattice structure was 
appreciated there were discussions as to whether the 
normal form had a triclinic or monoclinic unit cell 
(Padurow, 1950; Whittaker, 1951). More recently 
Jagodzinski & Kunze (1954c) have found evidence of 
a helical structure. I t  is therefore of interest to 
ascertain what structure types can be expected among 
structures of tubular form, and also to what extent 
the usual crystallographic concepts of projections and 
space groups can be applied to them. 

2. Definition of a cylindrical lattice 

A cylindrical lattice consists of a set of congruent 
two-dimensional lattices inscribed on a set of cylin- 
drically curved surfaces and mutually ordered with 
respect to the cylinder axis, there being equal and 
uniform normal spacings between each successive pair 
of such surfaces. 

We may define the following parameters of such a 
lattice: 

a' is the normal spacing between each successive pair 
of cylindrical surfaces. 

b and c are the lattice parameters of the two-dimen- 
sional lattice (the generating lattice); of these c 
is taken as that  which is the more nearly parallel 
to the cylinder axis. 

is the angle included between the b and c axes. 

fl is an angle such that  each successive two-dimensional 
lattice is displaced by a distance a' cot #, parallel 
to the cylinder axis, with respect to its inner 
neighbour. 

I t  will then be convenient to put a = a' cosec/~. 
This definition would include lattices inscribed on 

any set of cylindrically curved surfaces whose right 
section constituted a set of equally spaced involutes 
of the same figure, l~eal structures, however, will be 
based only on those lattices which are free from loops 
and intersections, and we are here concerned primarily 
with those which are capable of forming a tubular 
structure. Moreover, it is to be expected that  a curved 
layer free from external anisotropic constraints will 
conform only to a curve whose radius of curvature is 
constant or a monotonic function of arc length. We shall 
therefore consider in detail only those lattices whose 
right sections are sets of equally spaced circles, or the 
successive turns of the involute of a circle. The latter 
will be referred to as spiral lattices. 

3. Possible  types of circular cylindrical lattices 

In a cylindrical lattice it is impossible that  two axes 
should be symmetrically equivalent since they are all 
uniquely definable, and we shall therefore take no 
account of cylindrical lattices in which two or more 
of the axial parameters are equal in length. There 
exist, therefore, three main types, corresponding in 
their angular parameters to three of the crystal sys- 
tems, as follows : 

Anorthic: a ~=/~ ~ ½zr (the name anorthic is clearly 
preferable to triclinic since only two angles can 
be specified). 

Monoclinic: two cases can be distinguished: fl ~: ~ = 
½~r and a ~ f l =  ½~. 

Orthorhombic" ~ = fl = ½~r (no rhomb can be defined, 
but the name will serve by analogy in the absence 
of the name aclinic). 

I t  will first be assumed that  the b axis lies in a right 
section of the cylinder. I t  then follows that  there is 
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a relat ion between a and b for such lattices which is 
necessary for their  existence, namely  

nb = 2ga ' ,  

where n is an integer. This ensures t h a t  there  is an 
integral  number  of b units  on every  layer  provided 
t h a t  there  is an integral  number  on one layer.  Subject  
to this condition the  following latt ice types  m a y  be 
defined: 

(i) Anorthic  of the  1st kind, ~ .  fl =~ ½~. This is 
generated by  an oblique two-dimensional  lattice, 
one axis of which is oriented perpendicular  to the  
cyl inder axis. Successive layers are displaced 
parallel  to this axis by  an amoun t  a '  cot ft. 

(ii) Monoclinic of the  1st kind, fl # ~ = ½~t. This 
results  if the  generat ing latt ice in (i) is made 
rectangular .  

(fii) Monoclinic of the 2nd kind, c~ # fl = ½ft. This 
results  from (i) if the  displacements of the  suc- 
cessive layers are set equal  to zero. 

(iv) Orthorhombie  of the 1st kind, ~ = fl = ½~. This 
results from (ii) if the  displacements of the  suc- 
cessive layers are set equal  to zero, or from (hi) 
if the  generat ing lat t ice is made rectangular .  

For  reasons which will appear  later,  these lat t ice types  
will be referred to as the regular  series. 

If  the  b axis is inclined to the  r ight  section of the 
cylinder then i t  mus t  lie on a helix. This would arise, 
for example, if the  rectangular  latt ice shown in Fig. 1 
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were wrapped into a cylinder so t h a t  A 1 is joined 
to  A2, A~ to A '  ; ' 3 etc. or in the general case so t h a t  An 
is joined to A~-+~. Then if a set of such cylinders 
were stacked one within the other we might  expect 
to obtain a second series of helical lattice types  analo- 
gous to the above, i.e. 

(v) Anorthic  of the 2rid kind, c~ # fl # ½re. 
(vi) Monoclinic of the 3rd kind, fl # ~ = ½~. 

(vii) Monoclinic of the 4th kind, c~ # fl = ½~. 
(viii) Orthorhombic of the  2nd kind, c¢ = fi = ½~. 

Types  (v)-(viii) m a y  indeed occur in real structures,  
bu t  the  following a rgument  shows tha t  t hey  cannot  
be geometrically perfect. Consider the most  general 
case, an anorthie latt ice of the 2nd kind, in which the 
innermost  cylinder has a radius a 0 and the  b axis on 

the layer of radius (a0+ma')  makes  an angle (~m with 
a r ight  section. Then for ordered stacking of the layers 
to be possible in the direction of the  cylinder axis i t  is 
necessary t h a t  the  pi tch of the  b-axis helix should be 
the same on every  layer.  Let  this pi tch be t. Then 
5~ m a y  be defined by  the relat ion 

Bu t  

Nt 
t an  (~m = 2g(a0+ma,  ) • (1) 

t COS ~m 
c s i n  ~ " (2)  

Hence at  least one of the  parameters  c and ~ mus t  
va ry  from layer  to layer  to sat isfy (2). Also, if pm is 
the  number  of b units  in the  developed form of the  
generat ing lattice, then  

2rt(ao+ma'  ) sin (~-b~m) 
Pm = b sin 

Nt cot ~ Ngt 2 
~ 2 g ( a ° b m a ' ) ( l +  2 g ( a 0 ÷ m a , ) -  8gg(a-~--ma,)2/. (3) 

I t  follows t h a t  if pm is integral  a t  least one fur ther  
pa ramete r  of the  set a, b and ~ mus t  va ry  with m, 
or a l ternat ively  t ha t  local imperfections occur as- 
sociated with non-integral  values of pro. 

The distortions required to sat isfy relations (2) and 
(3) may,  however, be very  small. In  chrysotfle, for 
example, where ~ = ½g, the  to ta l  s train in any  layer  
would not  exceed 0.05 % for n = 1, even if a o were 
assumed to be as small as 3 0 / ~ ;  and since chrysotile 
has a centred latt ice (see § 7) half integral  values of 
N are permit ted,  so t h a t  a helical lat t ice with a 
max imum strain of only one-quarter  of this is possible. 
Such lattices m a y  therefore be of practical  importance.  

4. Poss ib le  types  of spiral  cyl indrical  l a t t i ce  

As before, we assume first t h a t  the  b axis lies on a 
r ight  section of the  cylinder. I t  then  follows t h a t  
fl = ½~, since the successive turns  of the spiral formed 
by  the  b axis of the generating latt ice are coplanar.  
There are, therefore, only two possible regular  lat t ice 
types  in these circumstances, which m a y  be named  
as follows in conformity with the nomencla ture  in- 
t roduced for the circular cylindrical latt ices:  

(i) M0n0clinic of the 2nd kind, ~ ,  fl -- ½~t. 
(ii) Orthorhombic of the 1st kind,  ~ = fl = ½g- 

The anorthic latt ice of the 1st k ind and the monoclinie 
lat t ice of the 1st kind cannot  exist. No relationship 
between the latt ice parameters  is imposed by  the  
construct ion of a spiral cylindrical lattice. 

If  the  b axis does not  lie on a r ight  section of the 
cylinder then  it  follows t h a t  fl # ½g. Therefore a 
monoclinic latt ice of the  4th kind and an ortho- 
rhombic lat t ice of the 2nd kind cannot  exist. Moreover, 
the  remaining latt ice types  cannot  exist in a geometri- 
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cally perfect form, for the b axis must advance a 
distance a'  cot fl along the cylinder axis for every turn 
of the spiral. I t  must therefore be inclined to the right 
section of the cylinder at any given point of the 
cylinder at  an angle given by sin ~ = a' cot fl/2zQ, 
where ~ is the radius of curvature of the cylinder at 
tha t  point. This clearly varies continuously along the 
b axis, so tha t  either the axes of the generating lattice 
must be curved, or the angle fl must vary  throughout 
the lattice. However, the distortions involved may 
once again be very small in practical cases. For ex- 
ample, in ehrysotile the maximum curvature required 
in the generating lattice would involve a total  change 
of direction throughout the lattice of about 10', 
although the corresponding variation in fl if the b 
axis of the generating lattice were straight would be 
of the order of 5 ° . 

In  view of these considerations it appears tha t  the 
necessarily slightly imperfect hehcal spiral cylindrical 
lattices of the following types may  also be of practical 
interest:  

(iii) Anorthic of the 2nd kind, a =I= fl + ½~r. 
(iv) Monoclinic of the 3rd kind, fl =~ ~ = ½zr. 

5. Incomplete cylindrical lattices 

If a cylindrical lattice subtends an angle less than 2~r 
at  all points of the cylinder axis, then all the restric- 
tions on the existence of the various lattice types 
disappear, and the imperfections in the helical series 
due to relation (3) disappear, but those due to relation 
(2) remain. 

6. Relationships of the cylindrical-lattice types 

The relation between the various possible circular and 
spiral cylindrical-lattice types is clarified by Table 1. 
The letters R and H denote the existence of a lattice 
of the specified type in the regular or the helical 
series respectively. 

7. Centred cylindrical lattices 

The analogy between the theory of cylindrical lattices 
and normal crystallographic theory may  be carried 
further if the concept of centred lattices is introduced. 

In cylindrical lattices which have a rectangular 

generating lattice (all those with ~ = ½~) the la t ter  
may  be either primitive (p) or centred (a). 

A second type of lattice analogous to a centred 
lattice arises if one or more sets of similar cylindrical 
lattice layers are intercalated between those which 
define the repeating unit in the radial direction. Such 
intercalated sets of layers will constitute co-axial 
cylindrical lattices having the same parameters a, b, c, 

and fl, but having different values of a 0 and relative 
displacements parallel to the cylinder axis. Such 
composite lattices may be denoted by cn, if the inter- 
calated layers divide the a' spacing into n equal parts. 

8. Cylindrical projections 

Up to this point only the geometrical arrangement of 
lattice points has been considered. In  real structures, 
however, there will be a distribution of mat ter  as- 
sociated with each lattice point. Such a distribution 
of mat ter  cannot conform to a three-dimensional space 
group, since there is no unit of the structure which 
repeats regularly in three dimensions. I t  is possible, 
however, to define two projections of such a distribu- 
tion which will constitute regular two-dimensional 
repeating patterns whose symmetry  can be discussed 
in terms of two-dimensional space groups. 

I t  is evident tha t  a cylindrical structure of the kind 
under discussion can only be formed by a layer struc- 
ture, the individual layers of which have dissimilar 
sides, and the successive layers of which have neg- 
ligible steric interactions with one another in the b-axis 
direction. I t  follows tha t  in such a structure these 
layers constitute zones lying between parallel circular 
or spiral cylindrical surfaces within which the structure 
is coherent. If any intensive property of the structure 
(e.g. electron density) is integrated along the normals 
to these surfaces over the thickness of the layer and 
projected on to the neutral  surface of the layer with 
respect to bending, then the two-dimensional projec- 
tion so obtained will form a regular repeating pattern.  
I t  may  conveniently be described as the cylindrical 
projection on (100) by analogy with normal crystallo- 
graphic nomenclature. This projection is based on the 
generating lattice of the structure, and is identical for 
every layer of the structure, although the different 
layers themselves differ from one another in detail as 
a result of their different curvatures. 

Anorthic  

Monoclinie 

Orthorhombic  

Kind  

l s t  
2nd } 

l s t  
2rid 
3rd 
4th 

1st } 
2nd 

Table 1 

Inter-axial  angles 

~ = ~ - -  ½~ 

Orientat ion of b axis 
to r ight  section 

f Parallel 
[ Incl ined 

Parallel 
Parallel 
Incl ined 
Incl ined 

Parallel  
Incl ined 

Circular 

R 
H 

R 
R 
H 
H 

R 
H 

Spiral 

H 

N 
H 

R 
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A second regular projection may  be defined as 
follows. Take any plane orthogonal to the cylindrical 
surfaces of the lattice. From every point on this plane 
construct an arc parallel to the b axis of the lattice 
which lies within the same layer. Continue each arc 
until  a point is reached whose environment in the 
cylindrical surface on which it lies is identical with 
tha t  at  the start ing point of the arc. If any intensive 
property of the structure is summed and projected 
along the arc on to the initial plane then a regular two- 
dimensional repeating pat tern  is obtained. This pat tern  
lies on a lattice with parameters a, c sin (~+~m), and 
included angle ft. I t  may  conveniently be described 
as the cylindrical projection down [010]. I t  has 
previously been shown (Whittaker, 1954) tha t  the 
amplitudes of the hO1 reflexions from a structure based 
on orthorhombic or monoclinic lattices of the 1st kind 
are proportional to the Fourier components of the 
electron-density projection defined in this way. 

9. Symmetry in cylindrical projections 

The cylindrical projection on (100) may  have any of 
the two-dimensional space groups belonging to the 
oblique and rectangular systems. But, because the 
inside and outside of a layer must be dissimilar, it  is 
not  permissible for the cylindrical projection down 
[010] to contain either a twofold rotation point or a 
symmetry  line perpendicular to the a axis. Therefore 
the only permissible two-dimensional space groups 
in this projection are p l ,  pm, 1~Y, and cm, in the usual 
notation, and their orientations are subject to restric- 
tions. In  order to make these restrictions clear it is 
convenient to use full space-group symbols with the 
same conventions as to order of the symbols as in the 
three-dimensional orthorhombic space groups, and to 
use a and b to denote centred lattices on the projec- 
tions on (100) and down [010] respectively. The nota- 
tion of the possible space groups in the lat ter  projection 
is then p l l l ,  p l l m ,  p l lg ,  and b l l m .  The alternative 
orientations Troll ,  Tgl l ,  and b m l l  are not permitted. 

10. Cylindrical lattices and dislocations 

Jagodzinski & KunT.e (1954c) have already pointed 
out tha t  spiral and helical cylindrical structures may  
be described in terms of radial and axial dislocations. 
I t  is in fact possible to give a formal description of all 
the cylindrical lattices discussed above in terms of 
dislocations introduced into a normal three-dimen- 
sional lattice of appropriate dimensions. 

Thus a regular circular cylindrical lattice may  be 
considered to arise by  the introduction of regularly 
spaced edge dislocations of Burgers vector b parallel 

to the cylinder axis, with a density of a'/b~ in the  
layer of radius ~. Such a lattice may  then be converted 
to a regular spiral by introduction of a Volterra edge 
dislocation along the axis with Burgers vector a ' ,  
and a regular lattice may  be converted to a helical 
one by a Volterra screw dislocation along the axis 
with Burgers vector Nt.  However, these descriptions 
are purely formal. I t  is not to be supposed tha t  the 
lattice is stressed in the usual way by  these disloca- 
tions; rather it  is the unstressed shape of the struc- 
tural  elements tha t  leads to the configurations de- 
scribed, and therefore the concept of a cylindrical 
lattice is preferable to tha t  of a dislocated normal 
three-dimensional lattice which has no real existence. 

In  addition to these formal considerations, we may  
envisage tha t  dislocations with their normal significance 
may  be introduced into cylindrical lattices. The fol- 
lowing cases are worthy of note, although no evidence 
is available at  present for their existence or stability. 

(i) 

(ii) 

(2) 

A radial screw dislocation would involve a join 
between a circular and a spiral cylindrical lattice. 
A screw dislocation parallel to the axis but  not 
along it would introduce a measure of helical 
structure in a regular cylindrical lattice without 
converting it into a helical lattice, and would thus 
provide a longitudinal growth mechanism for a 
regular cylindrical lattice. 
Radial edge dislocations with Burgers vector b 
could convert cylindrical lattices into tapering or 
conical structures. 

I wish to thank the Directors of Ferodo Limited 
for permission to publish this paper, and also Dr 
E. A. G. Knowles for helpful discussions on the geo- 
met ry  of spiral lattices. 
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